How to Minimize Bugs in Cryptography
Code

Jade Philipoom
2025-12-28

Everyone makes mistakes

A

9JUaPTJUuOod

effort

encrypt (key, message)

encrypt (key, message)

encrypt (0x123456..., "test message") = 0xf93274b. ..

encrypt (key, message)

encrypt (0x123456..., "test message") = 0xf93274b. ..

k = random()
m = random()
decrypt(k, encrypt(k, m)) = m

encrypt (key, message)

encrypt (0x123456..., "test message") = 0xf93274b. ..

k = random()
m random ()

decrypt(k, encrypt(k, m)) = m

k = random()

m = random()

encrypt(k, m) = other_lib_encrypt(k, m)

Clever testing

Wycheproof: the first line of defense

wycheproof © Watch 166 ~ % Fork 320 V¢ star 2.9

Go to file + <> Code ~ About

Project Wycheproof tests crypto
libraries against known attacks.

& rugk

cpu

| github

Coverage-guided fuzzing tries to generate inputs that cover all
lines in your code.

if (x >> 32 == 0x39c3) {

return a;

} else {

return b;

Same behavior as the previous code, but now it’s harder for
coverage-guided fuzzing to realize if the a case is not tested.

uint64_t y = (x >> 32) ~ 0x39c3;
uint64_t c = (0 - y) >> 63;
uint64_t bmask = 0 - c;

uint64_t amask = ~bmask;

return (a & amask) | (b & bmask);

Static analysis

Type systems are a form of static analysis!

void foo(int a) {

char bar[] = "bar";
foo(bar);

void foo(nonsecret_t a) {

secret_t key = get_key();
foo(key);

In C, static analysis tools can also check for buffer/integer
overflows and undefined behavior.

void foo(int *a) {
al[10]

int bar[3] = {1, 2, 3};
foo(bar);

The Rust borrow checker is also an example of static analysis.

fn foo(a: &mut [i32]) {

for _in a.iter() {

a[0] += 1;

error [E0506] : cannot assign to “al[_]" because it is borrowed
--> src/main.rs:4:9

31 for _ in a.iter() {
I e
| |
| “a[_]" is borrowed here
| borrow later used here
4 al0] += 1;
|

“““““ “a[_]" is assigned to here but it was already borrowed

$ check_loop.py bad_loop.elf
check_loop: ERROR: Control flow instruction (jal) at
end of loop at PC 0x14

10

(m)

ki = pow(k,-1)
e = hash(m)
rd = r * d

s = ki * (e + rd)

11

$ check_const_time.py --verbose x25519.elf\

——subroutine X25519 --secrets w8

Analyzing routine X25519 with initial secrets ['w8']
PASS

12

Formal methods

SAT and SMT solvers

,CVC5 Z3

Boolector

13

C Bounded Model Checker (CBMC)

MLK_STATIC TESTABLE void mlk poly ntt c(mlk_poly *p)

__contract__(

requires(memory no_alias(p, sizeof(mlk_poly)))
requires(array_abs ind(p->coeffs, ®, MLKEM_N, MLKEM_Q))

assigns(memory_slice(p, sizeof(mlk_poly)))
ensures(array_abs_bound(p->coeffs, ©®, MLKEM N, MLK NTT BOUND))

This is a real example from the mlkem-native project, and ensures that
during a particular polynomial transformation (NTT) the upper
bounds on each coefficient in the polynomial stay low enough.

Proof-aware programming languages (Dafny, F*)

I Maximum(values: seg<int>) returns (max: int)
ires values != []

res max in values

re orall i | @ <= 1 < |values| :: values[i] <= max

max := values[@];
for idx := @ to |values|

nt max in values

t forall j | @ <= j < idx :: values[j] <= max

if max values[idx] {
max := values[idx];

Example from Dafny’s Github repository: full correctness for a small
program. Dafny and Z3 solve this fully automatically.

15

spec

code

\ /

equation

no
+counterexample

16

spec

code

\ /

equation

solver

no
+counterexample

h 4

D

17

spec ~_
equation solver
code P
hints//f no
+counterexample

h 4

D

18

Project Everest: Perspectives from Developing Industrial-Grade High-Assurance
Software

“Our experience with SMT solving was, on the whole, positive—it is

hard to imagine proofs at the scale of ours being done without heavy

automation. That said, we also confronted several challenges, including

the opacity of SMT solvers and occasional sensitivity to small changes
in verification conditions.”

19

Proof Assistants

THEOREM PROVER

FROCQ

v /g @"z\\
UAgda &P

20

File Edit Options Buffers Tools Coq Proof-General Holes Help

[sslcoRL T SRR N S QRS SRR | o N N -4

(* states that a [nat] is in the range [low...high) *)

Definition in_range (low high : nat)

: nat -> Prop :=
fun x => x < high /\ low <= x.
(* states that we can expand the range and know that it

still holds everything in the original range *)
Lemma loosen_range :

1 goal (ID 7)

forall low high new_low new_high : nat,
high <= new_high ->
new_low <= low ->

forall x : nat, in_range low high x -> in_range new_low
forall low high new_low new_high, new_high x
high <= new_high ->
new_low <= low ->
= forall x,
in_range low high x ->
in_range new_low new_high x.
Proof.
Ui *goals* AL 17 Coq Goals +2)
Refe 45% 1855 (Cog Script(i-) +2 Holes) | U *response* ALl L1 Coq Response

21

File Edit Options Buffers Tools Coq Proof-General Holes Help

[sslcoRL T SRR N S QRS SRR | o N N -4

(* states that a [nat] is in the range [low...high) *)

Definition in_range (low high : nat)

: nat -> Prop :=
fun x => x < high /\ low <= x.
(* states that we can expand the range and know that it
still holds everything in the original range *)
Lemma loosen_range :
forall low high new_low new_high,
high <= new_high ->

new_low <= low ->
forall x,
in_range low high x ->
in_range new_low new_high x.
Proof.

cbv [in_range].

45% 1856 (Cog Script(1-) +2 Holes)

new_low <= x

OE

TE:

1 goal (ID 8)

forall low high new_low new_high : nat,
high <= new_high ->
new_low <= low ->

forall x : nat, x < high /\ low <= x -> x < new_high /\

goals ML L7 Cog Goals +

response Al L1 Coq Response

22

File Edit Options Buffers Tools Coq Proof-General Holes Help

@ T > Y O S

=

Definition in_range (low high : nat)
fun x => x < high /\ low <= x.

Lemma loosen_range :
forall low high new_low new_high,
high <= new_high ->
new_low <= low ->
= forall x,
in_range low high x ->
in_range new_low new_high x.
Proof.
cbv [in_range].
intros. destruct H1.

“itto Ref 45% 1857 (Cog Script(l-) +2 Holes

)

(* states that a [nat] is in the range [low...high) *)
: nat -> Prop :=

(* states that we can expand the range and know that it
still holds everything in the original range *)

1 goal (ID 14)

- low, high, new_low, new_high : nat
- H : high <= new_high

- Ho : new_low <= low

- x : nat

- H1 : x < high

- H2 @ low <= x

X < new_high /\ new_low <= x

U %5 *goals* AL (10 (Coq Goals +2)

[Ui *response* ALl L1

Coq Response

23

File Edit Options Buffers Tools Coq Proof-General Holes Help

@™ T <> Y G

O Ao

(* states that a [nat] is in the range [low...high) *)

Definition in_range (low high : nat)
fun x => x < high /\ low <= x.

Lemma loosen_range :

forall low high new_low new_high,
high <= new_high ->

new_low <= low ->
forall x,
in_range low high x ->
in_range new_low new_high x.
Proof.

cbv [in_range].

intros. destruct H1.
split; lia.
**- Refq 45% 1858 (Cog Script(@-) +2 Holes)

: nat -> Prop :=

(* states that we can expand the range and know that it
still holds everything in the original range *)

U-ws- *goals*
No more goals.

Cog Goals =

[U *response*

Coq Response

mul(a, b):
r[0]=a[0]*b[0]

£t41=r[4]-t[4]
return r

proof

forall a b,
r such that
r =a*b %
(21255-19)

25

mul(a, b):
r[0]=a[0]*bfe] | proof | forall a b,
H r such that
r[4]= r =a*b %
e (21255-19)
mul(a, b): p - - -
0]=a[0]*b[0 o0 orall a b,
r[e]=af0]*b[0] <p_’ e By
r[9]= r=a*b %
e

26

mul(a, b):
r[0]=a[0]*bfe] | proof | forall a b,
H r such that
r[4]= r =a*b %
e (21255-19)
mul(a, b): p - - -
r[@]=a[0]*b[@ roo orall a b,
[01=a[e]*b[0] <p_’ r such that
r[9]= r=a*b %
.
mul(a, b): p - - -
0]=a[0]*b[0 oo orall a b,
Folzalolbie] P r such that
£[9]= r=a*b %
.

27

genmul(p, w):
= templ(p,w)
f = optimize(f)

return f

mul(a, b):
r[0]=a[0]*bfe] | proof | forall a b,
H r such that
r[4]= r =a*b %
e (21255-19)
mul(a, b): p - - -
r[@]=a[0]*b[@ roo orall a b,
[01=a[e]*b[0] <p_’ r such that
- I =a*b %
.
mul(a, b): p - - -
0]=a[0]*b[0 oo orall a b,
Folzalolbie] P r such that
£[9]= r=a*b %
)

proof forall p w,
' ' f such that
forall a b,

f(a,b) = a*b % p

genmul(2/A255-19, 64)

genmul(27A521-1, 64)

genmul(2/255-19, 32)

28

Formal methods are also useful above and below the level of code.

Protocols
(e.g. TLS, Signal SPQR)

Algorithms
(e.g. AES, SHA256, EdDSA, ML-DSA)

Software
(this talk)

Hardware

29

Formally verified code is everywhere.

30

Formally verified code is everywhere.

Messengers, tools. . .

9

ryptography and SSL/TLS Toolkit

30

Formally verified code is everywhere.

Messengers, tools. . .

O

)

ryptography and SSL/TLS Toolkit

...browsers. ..

C @

30

Formally verified code is everywhere.

Messengers, tools. . .

)

ryptography and SSL/TLS Toolkit

...browsers. ..

C @

...cloud platforms. ..

™ A O

30

Formally verified code is everywhere.

Messengers, tools. . .

C @

...cloud platforms. ..

™ A O

...and popular or standard libraries.

GO ® @ zizic

30

Questions?

	Everyone makes mistakes
	Clever testing
	Static analysis
	Formal methods
	Questions?

