
How to Minimize Bugs in Cryptography
Code

Jade Philipoom
2025-12-28

1

Everyone makes mistakes

2

encrypt(key, message)

encrypt(0x123456..., "test message") = 0xf93274b...

k = random()
m = random()
decrypt(k, encrypt(k, m)) = m

k = random()
m = random()
encrypt(k, m) = other_lib_encrypt(k, m)

3

encrypt(key, message)

encrypt(0x123456..., "test message") = 0xf93274b...

k = random()
m = random()
decrypt(k, encrypt(k, m)) = m

k = random()
m = random()
encrypt(k, m) = other_lib_encrypt(k, m)

3

encrypt(key, message)

encrypt(0x123456..., "test message") = 0xf93274b...

k = random()
m = random()
decrypt(k, encrypt(k, m)) = m

k = random()
m = random()
encrypt(k, m) = other_lib_encrypt(k, m)

3

encrypt(key, message)

encrypt(0x123456..., "test message") = 0xf93274b...

k = random()
m = random()
decrypt(k, encrypt(k, m)) = m

k = random()
m = random()
encrypt(k, m) = other_lib_encrypt(k, m)

3

Clever testing

Wycheproof: the first line of defense

4

Coverage-guided fuzzing tries to generate inputs that cover all
lines in your code.

if (x >> 32 == 0x39c3) {
// happens only 1/2ˆ32 random tests
return a;

} else {
...
return b;

}

5

Same behavior as the previous code, but now it’s harder for
coverage-guided fuzzing to realize if the a case is not tested.

uint64_t y = (x >> 32) ˆ 0x39c3;
uint64_t c = (0 - y) >> 63; // 0 if y=0, otherwise 1
uint64_t bmask = 0 - c; // all 1s if c=1, 0 if c=0
uint64_t amask = ~bmask; // all 1s if c=0, 0 if c=1
...
return (a & amask) | (b & bmask); // either a or b

6

Static analysis

Type systems are a form of static analysis!

void foo(int a) {
...

}

char bar[] = "bar";
foo(bar); // compiler error!

void foo(nonsecret_t a) {
...

}

secret_t key = get_key();
foo(key); // compiler error!

7

In C, static analysis tools can also check for buffer/integer
overflows and undefined behavior.

void foo(int *a) {
a[10] = 0;
...

}

int bar[3] = {1, 2, 3};
foo(bar);

8

The Rust borrow checker is also an example of static analysis.

fn foo(a: &mut [i32]) {
for _ in a.iter() {

a[0] += 1;
}

}

error[E0506]: cannot assign to `a[_]` because it is borrowed
--> src/main.rs:4:9
|

3 | for _ in a.iter() {
| --------
| |
| `a[_]` is borrowed here
| borrow later used here

4 | a[0] += 1;
| ^^^^^^^^^ `a[_]` is assigned to here but it was already borrowed

9

$ check_loop.py bad_loop.elf
check_loop: ERROR: Control flow instruction (jal) at
end of loop at PC 0x14

10

11

$ check_const_time.py --verbose x25519.elf\
--subroutine X25519 --secrets w8

Analyzing routine X25519 with initial secrets ['w8']
PASS

12

Formal methods

SAT and SMT solvers

13

C Bounded Model Checker (CBMC)

This is a real example from the mlkem-native project, and ensures that
during a particular polynomial transformation (NTT) the upper

bounds on each coefficient in the polynomial stay low enough.

14

Proof-aware programming languages (Dafny, F*)

Example from Dafny’s Github repository: full correctness for a small
program. Dafny and Z3 solve this fully automatically.

15

16

17

18

“Our experience with SMT solving was, on the whole, positive—it is
hard to imagine proofs at the scale of ours being done without heavy
automation. That said, we also confronted several challenges, including
the opacity of SMT solvers and occasional sensitivity to small changes

in verification conditions.”

19

Proof Assistants

20

21

22

23

24

25

26

27

28

Formal methods are also useful above and below the level of code.

29

Formally verified code is everywhere.

Messengers, tools. . .

. . . browsers. . .

. . . cloud platforms. . .

. . . and popular or standard libraries.

30

Formally verified code is everywhere.
Messengers, tools. . .

. . . browsers. . .

. . . cloud platforms. . .

. . . and popular or standard libraries.

30

Formally verified code is everywhere.
Messengers, tools. . .

. . . browsers. . .

. . . cloud platforms. . .

. . . and popular or standard libraries.

30

Formally verified code is everywhere.
Messengers, tools. . .

. . . browsers. . .

. . . cloud platforms. . .

. . . and popular or standard libraries.

30

Formally verified code is everywhere.
Messengers, tools. . .

. . . browsers. . .

. . . cloud platforms. . .

. . . and popular or standard libraries.

30

Questions?

	Everyone makes mistakes
	Clever testing
	Static analysis
	Formal methods
	Questions?

